## **SWS Instrument Status:**

ARM Mentor: Connor Flynn

ARM Developer: Sutanay Choudhury

Thanks to Pat Dowell and Chris Martin at SGP for consistently excellent on-site support.



### **SWS General Characteristics**

- Zenith radiance, < 2° FOV full-angle</p>
- Spectral range from ~350 nm 2.2 μm spectra @ 1 Hz
- Si linear array, 300-1100 nm
  - Zeiss MMS NIR-enhanced, ambient room temperature
  - 256 pixels, +/- 0.3 nm CWL, ~3.3 nm spacing, 8 nm FWHM
- ► InGaAs linear array, 900 nm 2.2 μm
  - Zeiss PGS 2.2, Peltier TE cooled
  - 256 pixels, +/- 0.6 nm CWL, ~5 nm spacing, ~12 nm FWHM



### **SWS** History and Reliability

- Designed and built by Warren Gore, NASA Ames, in collaboration with Peter Pilewskie.
- Mentored by Peter Pilewskie, Scott Kittelman, Pat McBride.
- Highly reliable with excellent uptime except for annual calibrations at NASA Ames in Nov-Dec timeframe.

#### However...

- In May 2008, it began to show intermittent problems with the InGaAs detector leading to shut down in August.
- This problem was resolved and the SWS returned to service in October, followed by annual calibration at NASA Ames in November.

So, we're okay. Right?



# And then the other shoe dropped... Clear Sky Modeling (SWS v. CHARTS)



<sup>\*</sup> Courtesy J Delamere & E Mlawer

# The bad news... Source of discrepancy has been identified









Percent of SWS signal due to direct beam contamination





### **SWS Sensor Head Sketch**





<sup>\*</sup> Courtesy P Pilewskie, W Gore



Close-up with back-lighting. The face of the ring is illuminated from light scattered from the back of the lens.



## Photos taken with flash showing scattering from the internal surface of the lens.





Pacific Northwest
NATIONAL LABORATORY





## **Robust Light-Blocking Solution**







### Close-up View of Sun Shade and Baffles







### **Current Status – Currently Being Renovated**

- Fabrication to begin the week of March 30.
- Approximately 80 hours of fabrication time over 4 weeks time.
- Testing and calibration extending for ~ 2-4 weeks.
- Re-deployment to SGP expected in early June.



### Backup Slides...



# Work with DQO to Generate Quicklooks and Instrument Comparisons

- Compare to MPL and RL zenith background
- Compare to NFOV and NFOV2 (2006-2007)
- Compare to IRT (qualitative only)



### Marshak and Chiu, Detection and Correction



InGaAs dark counts for 250 ms integration time dark counts red circles denote pixels with atypical temperature response. 

InGaAs pixel number (1-256)

